
Advances in Electrical and Computer Engineering Volume 13, Number 2, 2013

Abstract—In this paper a novel multiplier based on

Karatsuba-Ofman Algorithm is presented. A binary field
multiplication in polynomial basis is typically viewed as a two
steps process, a polynomial multiplication followed by a
modular reduction step. This research proposes a modification
to the original Karatsuba-Ofman Algorithm in order to
integrate the modular reduction inside the polynomial
multiplication step. Modular reduction is achieved by using
parallel linear feedback registers. The new algorithm is
described in detail and results from a hardware
implementation on FPGA technology are discussed. The
hardware architecture is described in VHDL and synthesized
for a Virtex-6 device. Although the proposed field multiplier
can be implemented for arbitrary finite fields, the targeted
finite fields are recommended for Elliptic Curve
Cryptography. Comparing other KOA multipliers, our
proposed multiplier uses 36% less area resources and improves
the maximum delay in 10%.

(2)mGF

Index Terms — Data security, Cryptography, Public key,

Algorithm design and analysis, Field programmable gate
arrays.

I. INTRODUCTION
Nowadays binary field arithmetic has achieved great

importance thanks to different applications like
cryptography and error-correcting code. Several algorithms
used by these applications are based on this kind of
arithmetic [1]. Among them, one of the most relevant is
Elliptic Curve Cryptography, which provides the same
security levels as RSA but uses shorter key lengths, which is
desirable for wireless and mobile environments.

Among binary field arithmetic operations, multiplication
is one of the most expensive. Typically a multiplication on

 is a two steps process: 1) a polynomial
multiplication, and 2) a modular reduction step. The
Karatsuba-Ofman Algorithm (KOA) [2] performs the first
step. Techniques, such as Barret reduction [3] or Lazy
reduction [4], can be used for modular reduction. Improving
multiplication performance is tackled in [5]-[18].

(2)mGF

There are different algorithms to perform binary field
multiplications, such as the Montgomery [19], the FFT [20]
and the Cantor [21] multipliers. The Karatsuba-Ofman
algorithm [2] was the first to achieve below
complexity and, additionally it is well suited for hardware
implementation because its structure is highly parallel.

2()O n

In this paper, a novel multiplier based on the
original KOA algorithm that integrates the modular
reduction step is introduced. Usually, the reduction step is
performed independently and is not considered in the
original KOA. The reduction step is executed by parallel
linear feedback shift registers. An analysis on the theoretical
cost in terms of area and maximum delay is carried out for
the proposed multiplier and the classical KOA with a
separate reduction step. This analysis considers an
irreducible polynomial defining the finite field as
trinomials. The new KOA algorithm is developed on FPGA
technology, using VHDL for hardware description and the
Xilinx ISE tools for implementation. Results in terms of
area and time are presented for finite fields recommended in
Elliptic Curve Cryptography. The proposed multiplier
improves resources usage and processing time when
compared to the KOA algorithm with Classical Reduction.

(2)mGF

(2)mGF

The rest of this document is organized as follows: Section
2 explains LFSRs and their use in binary field arithmetic
and realization in hardware. Section 3 explains the KOA
algorithm for multiplication in including the
Classical Reduction step. Section 4 describes the proposed
modification for the KOA algorithm and the hardware
architecture is presented providing a comparison with the
classical approach. Details of the architecture
implementation and results are discussed in Section 5.
Finally, conclusions of this research are drawn in Section 6.

(2)mGF

II. LFSR AND PARALLEL LFSR (PLFSR) IN (2)mGF

A LFSR is a -bit shift register that pseudo-randomly
scrolls among

n
2n 1− states at high speed [22]. It requires

minimal logic to generate binary sequences. After reaching
all states, the output sequence is repeated cyclically.

A LFSR of length has memory cells which together
form the initial state (

n n

0 1 1, , , ns s s −) of the shift register. The
input bit for the LFSR is a linear function of its current or
previous state. Several bits of the shift register value are
driven by the XOR function, because this and the inverse-
XOR are the only 1-bit linear functions. The selection of
those bits is represented by a polynomial or characteristic
polynomial over {0,1}. If the input bit for the LFSR is a
linear function of bits 0 1,s s and 1ns − , then the LFSR

Karatsuba-Ofman Multiplier with Integrated
Modular Reduction for (2)mGF

Eduardo CUEVAS-FARFAN1, Miguel MORALES-SANDOVAL2, Alicia MORALES-REYES1,
Claudia FEREGRINO-URIBE1, Ignacio ALGREDO-BADILLO3, Paris KITSOS4, René CUMPLIDO1

1Instituto Nacional de Astrofisica, Optica y Electronica, 72840, Puebla, Mexico
2Laboratorio de Tecnologias de la Informacion-CINVESTAV,87130, Victoria, Tamaulipas, Mexico

3Universidad del Istmo Tehuantepec,70760, Oaxaca, Mexico
4Hellenic Open University, GR-26222, Patras Greece

cuevas.farfan@ccc.inaoep.mx

 3
1582-7445 © 2013 AECE

Digital Object Identifier 10.4316/AECE.2013.02001

[Downloaded from www.aece.ro on Friday, May 31, 2013 at 15:45:31 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 13, Number 2, 2013

characteristic polynomial is 1() 1 nf x x x −= + + ; thus any
LFSR can be represented as a x polynomial variable. In
finite fields, this polynomial must be irreducible which
means it cannot be split in the product of two polynomials.

An element ()A x in the field can be represented
as a -order polynomial as follows:

(2)mGF
(1m −)

0

1 2
1 2 1

1

0

() m m
m m

m
i

i
i

A x x x x

x

α α α

α

− −
− −

−

=

= + + + +

= ∑

α
 (1)

where ()A x is normally represented as a -bit vector
containing all coefficients defining its corresponding
polynomial, that is,

m

1 2 1 0() (, , , ,)m mA x α α α α− −= .
Addition (and subtraction) in is a bitwise XOR

operation between operands bit vectors resulting in a trivial
operation in software or hardware. On the contrary,

 multiplication and division are more expensive
operations. These operations usually require the modular
reduction step

(2)mGF

(2)mGF

() mod ()A x f x , where ()f x is an irreducible
-order polynomial that generates . m (2)mGF ()f x is

expressed by Equation (2), considering . 0 1mf f= =

1

1 2 1
1

() 1 (1, , , , ,1)
m

m i
i m m

i
f x x f x f f f

−

− −
=

= + + =∑ (2)

Thus, ()xA x becomes a shift to the left operation on
()A x leading to a -bit vector, (1m +)

1 2() (, ,m mxA x α α− −= . 1 0, , ,0)α α . The resulting bit vector
is the same with an extra ‘0’ at the least significant position.
If 1 0mα − = , a reduction is not necessary. However,
if , the resulting polynomial is reduced by 1 1ma − = ()f x ,
following () ()xA x f x⊕ . Equation (3) defines ()xA x
considering : 0 1mf f= =

 (3) 2 1 1 3 2 1

0 1 1 1

() mod ()
([], [],

[],)
m m m m m m

m m

xA x f x
f f

f a
α α α α
α α

− − − − − −

− −

=
⊕ ⊕

⊕
,

where represents a bitwise XOR operation and
represents a bitwise AND operation. This expression is well
modeled by the LFSR shown in Fig. 1a. The combinatorial
logic (CL-LFSR) shown in Fig. 1a performs the required
arithmetic to compute

⊕

() mod ()xA x f x . Therefore, CL- d

a.

b.

Figure 1. Linear feedback shift register structures. a. LFSR basic structure.
b. Parallel LFSR (PLFSR) for computing () mod ()dx A x f x

LFSR blocks could be connected in a cascade fashion to
implement a parallel LFSR (PLSFR) and to obtain

() mod ()dx A x f x in just one iteration, as it is shown in Fig.
1b. More details on the LFSR and the PLFSR are described
in [19].

III. KARATSUBA-OFMAN ALGORITHM FOR
MULTIPLICATION IN (2)mGF

A finite field is defined by an irreducible -order
polynomial

(2)mGF m
()f x . Considering ()A x and being ()B x

(1m)− -order polynomials in with
coefficients

(2)mGF
, {0,i i 1}α β ∈ . A field multiplication ()· ()A x B x

in results in another field element that is
computed in two steps:

(2)mGF ()C x

1. '() ()· ()C x A x B x= , where is a 2'()C x 2m − -order
polynomial.

2. Modular reduction, . () '() mod ()C x C x f x=

There are several algorithms to compute , among
them and widely known is the classical or Schoolbook
method consisting of a shift-and-add scheme. Most of the
proposed field multiplication algorithms are based on this
method whose complexity is . In 1962, a
multiplication algorithm was published by Karatsuba and
Ofman [2] with complexity. The KOA algorithm
computes the first step of a field multiplication by using the
divide and conquer technique. The multiplication is
computed recursively using three field multiplications with
low order operands.

'()C x

2()O n

2log 3(O n)

'()C x

For simplicity, lets consider that . This
means that all field elements in are power of 2 bit-
vectors, and that

2 , 0tm t= ≥

(2)mGF
2m is always a power of 2.

KOA splits the multiplier and multiplicand as it is shown
in the following equation:

 1 2 22 1() (, , , , , ,)
H L

mm m

A A

mA x 0α α α α α− − −= (4)

Thus, the next equations are sustained:
 2() H m LA x A x A= + (5)
 2() H m LB x B x B= + (6)

where , ,H L HA A B and LB are 2m -order polynomials, and
() ()· ()C x A x B x′ = is calculated as:

2

2

1 0

2

2

() ()·()m m

m

H L H L

m

C x A x A B x B
z x z x z

= + +

= + +
 (7)

where,

2

1

0

·

· ·

·

H H

H L L H

L L

z A B

z A B A B

z A B

=

+

=

= (8)

At this point, ()· ()A x B x requires four multiplications
with operands that are half the size the initial ones. KOA
can be used recursively to compute these new
multiplications and it reduces the number of multiplications
to three at the cost of some more additions by redefining , 1z

 4

[Downloaded from www.aece.ro on Friday, May 31, 2013 at 15:45:31 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 13, Number 2, 2013

as shown in Equation (9).
 (9) 1 2()·()H L H Lz A A B B z z= + + − − 0

In , additions and subtractions are the same and
are performed as bitwise XOR operations, thus redefining

 has no substantial cost. The recursive Karatsuba-Ofman
method for multiplying two polynomials

(2)mGF

1z
(), ()A x B x in

 is shown in Algorithm 1. (2)mGF
The KOA algorithm receives as input the multiplier and

multiplicand as well as their bit-length . In the first call
. At each recursive call, operands are divided

resulting in

()n
n m=

2n -bit vectors. The recursive KOA finishes
when , returning as a result the bitwise AND of 1n = ()A x
and . ()B x

Steps 7-8 in Algorithm 1 perform a recursive call to KOA
and the resulting polynomials , and are (0z 1z 2z 1)n − -bit
vectors. In step 9, the final multiplication
is calculated, resulting in a ()-order polynomial. When
all recursive calls are finished, the final result is a (2 1

() ()· ()C x A x B x′ =
2n −1

m −)-
order polynomial. A graphical representation of ()C x′
operation is depicted in Fig. 2.

Up to this point, it is assumed that , but in many
applications, such as cryptography, m is not a power of 2.
One strategy is padding with 0’s the bit vector
representation of the input operands until reaching a power
of 2 length, but with this strategy many gates remain
unused. Thus, a modification to KOA called Binary
Karatsuba Multiplier. (BKM) was proposed in [17]. More
details on this technique are provided next.

2km =

A. Reduction step
Algorithm 1 calculates 2 1

2() 0m mC x z x z x z′ = + + , where
 is a ()-bit vector that does not belong to

 and needs to be reduced
()C x′ 2m −1
(2)mGF mod ()f x .

For general irreducible polynomials ()f x , specialized
reduction methods must be applied, such as the Barret

Algorithm 1 KOA[,n ()A x ,]: Recursive
Karatsuba-Ofman Algorithm

()B x

Input: ; 2 , 0,tn t n= ≥ ≤ m
 ()A x , -bit vectors ()B x n
Output: '() ()· ()C x A x B x=
1: IF 1n =
2: RETURN A B
3: ENDIF
4: 2() () ()nH LA x A x x A x← +

5: 2() () ()nH LB x B x x B x← +

6: 2z ← KOA []2 , ,H HA Bn

7: 0z ← KOA []2 , ,L LA Bn

8: 1z ← KOA 2 0[, (), ()]2 L H L HA A B Bn z+ + + + z

9: 2 1
2

0'() n nC x z x z x z← + +

10: RETURN '()C x

Figure 2. C(x) computation at step 9 of KOA algorithm

reduction method [23] or the Montgomery method [24].

For special ()f x classes, such as trinomials and
pentanomials, the reduction step of KOA algorithm can be
performed using a matrix of XOR gates [25]. This technique
has been used in KOA hardware implementations [5], [16],
[17]. The reduction technique is based on the fact that if

() ()mf x x g x= + , where ()g x is a low order (m<)
polynomial, the equivalence () mod ()mx g x f x≡ is
sustained. Therefore, a trinomial ()f x with form

() 1m af x x x= + + expresses polynomial in the
following way:

'()C x

2 2 1 2 2

0 0

1 1 1

2
0 0 0

(1) (2) (3)

1 1

2
0 0

(4) (5)

'() ()
m m m

i i a i m i
i i i

i i i m

m m a a
i a i

i i m m a i
i i i

a m
i i

m a i m i
i i

C x c x c x c x x

c x c x c x

c x c x

− − −
+ − −

= = =

− − − −
+ +

+ − +
= = =

− −

− + +
= =

= = + + m

a i= + +

+

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

+ (10)

The last expression in Equation (10) states that can
be formulated as a -bit vector that results from adding
five terms obtained from , achieving the desired
reduction

()C x
m

'()C x
mod ()f x . Graphically, this reduction is shown

in Fig. 3.

B. Theoretical cost analysis for KOA with Classical
Reduction
Let be the cost in area of a KOA hardware
implementation. If

S
1m = , the total cost is only one 1-bit

AND gate. If , the total cost is given by three KOA
recursive calls with half size operands:

1m >

23· mS . In addition,
the following XOR gates are also needed:

• Two (2n) XOR gates to perform (L HA A+) and
(L HB B+), Algorithm 1, step 8.

• Two (1n −) XOR gates to add three (1n −)-bit
numbers, Algorithm 1, step 8.

• One (1n −)-bit XOR to concatenate and ,
Algorithm 1, step 9.

2z 1z

The total number of XOR gates required is 4n 3− . The
reduction step cost is given by the number of XOR gates
necessary to add five terms of Equation (10), which is
2m a+ , where corresponds to the power of the second
term in the irreducible polynomial

a
()f x .

The total area cost for the KOA algorithm considering the
Classical Reduction technique for trinomials, is given by the

 5

[Downloaded from www.aece.ro on Friday, May 31, 2013 at 15:45:31 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 13, Number 2, 2013

Figure 3. computation, where () '() mod ()C x C x f x= ()f x is a trinomial.

recurrence in the next equation:

 2

2

1· if 1
3 4 3· if
3 6 3· if

n n

n

AND n
S n XOR nS
S n b XOR n

=⎧
⎪ + − ≠= ⎨
⎪ + + − =⎩

m
m

 (11)

where , for any . 2tm = 0t ≥
Considering as the time delay required for hardware

implementation. Thus, and
T

AT XT are the maximum delays
for AND and XOR gates respectively. If , the total
KOA delay is given by the AND gate in Algorithm 1, line 2.
If , the three KOA calls in Algorithm 1, lines 7-8 can
be performed in parallel, each with

1m =

1m >

2mT time cost. However,
KOA call at step 8 requires two additions, similar to the
previous step, (H LA A+) and (H LB B+). These two
operations can be performed in parallel with XT delay. Once
step 8 is completed, another two additions are required to
calculate the cost of 2 XT . Finally, one addition is required at
step 9, to add one XT delay that leads to a total cost of

2 4m XT T+ . Thus, the delay for the reduction step is 3 XT .
Time complexity for KOA algorithm is given by the
recurrence in the following equation:

 2

2

if 1
4 if
7 if

n

A

Xn

Xn

T n
T T nT
T T n

=⎧
⎪ + ≠= ⎨
⎪ + =⎩

m
m

 (12)

IV. KARATSUBA-OFMAN WITH MODULAR REDUCTION
INTEGRATED

In this section the novel KOA algorithm proposed in this
research, which integrates the modular reduction step within
the algorithmic procedure, is presented. Considering
Algorithm 1, in step 9, is multiplied by 2z nx and by 1z

2nx . The proposed approach takes advantage of the module
operation and integrates the modular reduction step within
KOA algorithm through Equation (13).

 2 1

2 1

2

2
0

() () mod ()
(0) mod ()

mod () mod ()

n

n

n

n

C x C x f x
z x z x z f x

z x f x z x f x z

′=

= + +

= + +

 (13)

In the previous section, it was demonstrated that Equation
(13) can be solved using LFSR. Following this approach,
two PLFSR are required to compute
and

2 mod ()nz x f x
2

1 mod ()nz x f x . Therefore, the total number of shifts
required are: n shifts for and 2 mod ()nz x f x 2n shifts for

2
1 mod ()xnz x f .
In order to identify the exact KOA's algorithmic stage

where this modification needs to take place, because most

applications do not use 2tm = , the field size is generalized
to be of any size. Thus, the BKM technique is used as a
starting point [17]. BKM considers that , where

 is the largest power of 2 that is smaller than , and
are the remainder bits. Then, instead of splitting the input
polynomial in two equal size bit-vectors, both input
polynomials are split according to the next equation:

2km = + d
2k m d

 1 02 2 1
() (, , , , ,)k k

H L

m

A A

A x α α α α− −
= (14)

where HA is a d -bit vector and LA is a -bit vector. 2k

The BKM strategy is used to analyze where the PLFSRs
are needed. In the first call , the resulting polynomial's
order is

n m=
2m 1− , thus a reduction is needed. For computing

 and , input operands size is , and results size is 0z 1z 2k

12k+ 1− . Because is the highest power of 2 that is smaller
than ;

2k

m 12k+ 1− is consequently higher than , therefore a
reduction is needed for and . To compute , if

m

0z 1z 0z
2d m> , the result is 2 1d m− > and a reduction is also

necessary.
Before analyzing subsequent recursive calls in the BKM

strategy, it is observed that several PLFSRs are required
resulting in an expensive hardware architecture. Hence, a
different strategy to optimize the number of PLFSRs is
approached. The proposed strategy is similar to that used in
[7] and [12]. It consists in splitting the input bit vectors by
half using the function ceiling to ensure an integer
result, since could be an odd number, see next equation:

⎡ ⎤⋅
m

 1 02 22 1() (, , , , , ,)
H L

m mm m

A A

A x α α α α α⎡ ⎤ ⎡− − ⎤⎢ −⎥ ⎢ ⎥
= (15)

where LA size is 2m⎡ ⎤⎢ ⎥ and HA size is 2m m− ⎡ ⎤⎢ ⎥ . This
approach is used in every algorithmic recursive call. To
determine if a reduction is necessary, the first call is
assessed with n m= , the input operands size is and the
result size is

m
2m 1− , thus a reduction is necessary. For

and , inputs size is
0z

1z 2m⎡ ⎤⎢ ⎥ ; if m is even result size is
1m − , if is odd result size is . Reduction is not

necessary in both cases. For , inputs size is
m m

2z 2m m− ⎡ ⎤⎢ ⎥ ; if
 is even result size is , if is odd result size is m 1m − m

2m − . Thus, reduction is not required. In recursive calls,
operands are smaller and no more reductions are needed. In
total, only one reduction at the first call is necessary
following the proposed approach.

Algorithm 2 presents the proposed novel Karatsuba-
Ofman algorithm based on LFSR. It is worth noticing that

 result is already reduced()C x mod ()f x . Steps 4 and 5 use
the splitting strategy explained before in Equation (15)
whereas steps 6-8 perform the recursive calls. Step 9
evaluates n m= which is true only for the first call when
using PLFSRs. For the rest of the calls and partial
results sizes are smaller than therefore a reduction is not
needed.

n m≠
m

As an example, consider the binary field , see
Fig. 4. During the first call, KOA-LFSR splits the input
operands following Equation

163(2)GF

(15) and makes three recursive

 6

[Downloaded from www.aece.ro on Friday, May 31, 2013 at 15:45:31 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 13, Number 2, 2013

Algorithm 2 KOA-LFSR[,n ()A x ,]:
Recursive Karatsuba-Ofman Algorithm
with reduction step integrated using
LFSR for field multiplication in

()B x

(2)mGF

Input: an integer smaller or equal to n
 ; m ()A x , () (2)mB x ∈GF
Output: () ()· () mod ()C x A x B x f x=
1: IF 1n =
2: RETURN A B
3: ENDIF
4: 2() () ()nH LA x A x x A x⎡ ⎤⎢ ⎥← +

5: 2() () ()nH LB x B x x B x⎡ ⎤⎢ ⎥← +

Figure 4. Recursive calls tree for KOA-LFSR algorithm for multiplication
in . 163(2)GF

0

6: 2z ← KOA-LFSR [2 , ,]H Hn An⎡ ⎤⎢ ⎥− B

7: 0z ← KOA-LFSR [,2 ,]L LAn B⎡ ⎤⎢ ⎥

8: 1z ← KOA-LFSR [, (2), (L H L HA A Bn B+ +⎡ ⎤⎢ ⎥)]
 2 0z z+ +

9: IF n m=
10: 2

2
2

0
2

1() mod () mod ()n nC x z x f x z x f x z⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥← +

 outputs, and most XOR gates perform a simple right shift
(1m i m iα α− − −←), see Equation (3). Simple shifts have no
cost in hardware; therefore from all gates in Fig. 1a, only
one XOR gate is necessary to calculate ()xA x when ()f x
is a trinomial. For pentanomials, three XOR gates would be
required. Because the number of shifts is fixed (2 2m⎡ ⎤⎢ ⎥ for

2
2

2 mod ()mz x ⎡ ⎤⎢ ⎥ f x and 2m⎡ ⎤⎢ ⎥ for 2
1 mod ()mz x f⎡ ⎤⎢ ⎥

+

x), the
number of XOR needed for these reductions is the number
of shifts multiplied by the number of XORs per shift. A total
of 3 2m XOR gates for trinomials and 9 2m for
pentanomials are required which is an improvement over the
traditional approach. Finally, Equation (16) summarizes
trinomials cost:

11: ELSE
12: 2

1
2

2 0
2() n nC x z x z x z⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥← + +

13: ENDIF
14: RETURN ()C x

 2

2

1· if 1
3 4 3· if
3 11 3· if2

n

n

n

n

AND n
S n XOR nS
S XOR

=⎧
⎪ m

n m
+ − ≠= ⎨

⎪ + − =⎩

 (16)
calls (steps 6-8) with at a 2nd recursion
level. In the second call and KOA-LFSR splits the
inputs again and invokes three recursive calls
with . For , recursive calls are
with , this call is at the third recursion level.
Splits and recursive calls continue until the basic case where

 is performed and multiplication is carried out with a
simple AND gate.

{95,96,96}n∈
95n =

{47, 48, 48}n∈ 96n =

{48, 48, 48}n∈

1n =

Time delay remains as formulated by Equation (12) for all
recursive calls with n m≠ , that is 2 4n XT T+ . For the first
call, PLFSR add some extra delay. Having PLFSR imply
several LFSR connected in cascade, however corresponding
time delay is not equivalent to the number of LFSRs. A
XOR is also shifted and requires shifts to return to the m

a.

Fig. 5 shows a diagram with the fully parallel KOA
algorithm based on the LFSR multiplier. In Fig. 5a, the first
call case using PLFSRs is shown. In Fig. 5b the recursive
calls case is drawn, where simple shifts are used instead of
PLFSR.

A. Theoretical cost analysis for KOA-LFSR multiplier
This novel approach leads to the next space and time
complexity analysis. To simplify this analysis, only the
special case of having an even is considered, that
is:

m
2m m=⎡ ⎤⎢ ⎥ 2 . It has been stated that PLFSRs are used

only in the first algorithmic call. Thus, all recursive calls,
where , have the same cost according to Equationn m≠ (11).

b.

In the first KOA-LFSR call, two (2m)
)

 XOR gates to
perform (L HA A+ and (are needed, see
Algorithm 2, step 8. Also, two (XOR gates to add ,

 and ()

)
)

)

L HB B+

1m − 0z

2z (L H L HA A B B+ + are required. Finally, two
 XOR gates to compute the addition of step 10 in

Algorithm 2 are needed. To calculate the PLFSR cost, a
special case with

(1m −)

()f x as a trinomial of the form
 is considered. It is observed that only
, as a consequence, most AND gates have

() 1m af x x x= + +

0 1m m af f f−= = =

Figure 5. Fully Parallel Karatsuba-Ofman Multiplier based on LFSR for
. a. First call ((2)mGF n m=). This call uses Parallel Linear Feedback

Shift Registers. b. Recursive calls only use simple shift.

 7

[Downloaded from www.aece.ro on Friday, May 31, 2013 at 15:45:31 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 13, Number 2, 2013

TABLE I. AREA COST () AND TIME DELAY () FOR KOA WITH CLASSICAL REDUCTION AND THE PROPOSED KOA-LFSR
CONSIDERING THE TRINOMIAL CASE.

nS nT

Parameter Classical KOA KOA-LFSR Case

nS 2

2

1·
3 4 3·

3 6 3·
n

n

AND
S n XOR

S n b XO

+ −

+ + − R

 2

2

1·
3 4 3·

3 ·211 3
n

n

AND
S n XO

S Xn

R

OR

+ −

+ −

if 1
if
if

n
n m
n m

=
≠
=

nT 2

2

4

7

A

Xn

n X

T
T T

T T

+

+

 2

2

4

6

A

Xn

n X

T
T T

T T

+

+

if 1
if
if

n
n m
n m

=
≠
=

original position. Most gates are simple shifts when using
trinomials and pentanomials, such as ()f x , with no

hardware cost. Because at most there are 2 2m⎡⎢ ⎤⎥ LFSRs
connected, only 2 XOR gates are actually in cascade. For
trinomials, which are the worst case, the PLFSR time delay
is 2 XT . Hence, the time delay for the first call is

2 4 2n X XT T T+ + . For pentanomials, PLFSR’s delay is 4 XT ,
because when a XOR returns to the original position, it also
goes through other 2 XOR gates. In this case, the first call
delay is 2 4 4n X XT T T+ + . The overall time delay for the
proposed multiplier considering trinomials is expressed by
the next equation:

 2

2

if 1
4 if
6 if

n

A

Xn

Xn

T n
T T nT
T T n

=⎧
⎪ + ≠= ⎨
⎪ + =⎩

m
m

 (17)

In Table I, a theoretical cost comparison for the KOA
algorithm with Classical Reduction and the proposed KOA-
LFSR is presented considering the trinomial case. It is
observed that the proposed KOA-LFSR algorithm achieves
a reduction in hardware cost and in time delay required to
implement the multiplier on a hardware platform.

V. ARCHITECTURE IMPLEMENTATION AND RESULTS
ANALYSIS

To validate the proposed modification of the KOA
algorithm, a fully parallel Karatsuba-Ofman Multiplier has
been designed, simulated and synthesized. Different fields
with irreducible polynomials considering both, trinomials
and pentanomials are assessed, see Table II. These
polynomials define finite fields recommended by the NIST
for cryptographic applications [26], while the others are
proposed by CERTICOM as a challenge1. For comparative
purposes, results for a fully parallel Binary Karatsuba
Multiplier using the Classical Reduction are presented.

The proposed architecture was implemented using VHDL
as a description language. For design validation, a C routine
to generate test data vectors was created and ModelSim PE
Student Edition 10.1c was used as simulation environment.
For synthesis, Xilinx ISE 13.2 was used targeting a Xilinx
Virtex-6 (xc6vlx240t) device.

Fig 6 shows the synthesis results for trinomials and
pentanomials. These graphs show the tendency of used
LUTs and the minimum clock period achieved by each
architecture. These results include the total hardware usage

necessary for the multiplication and the reduction steps.

1 http://www.certicom.com/index.php/curves-list, August 2012

In Fig. 6, the improvement for the proposed KOA-LFSR
algorithm in time and area is presented when compared to
the BKM technique with Classical Reduction. Theoretical
cost for the BKM technique with Classical Reduction is not
provided.

These results not only confirm the theoretical
improvement shown in Table I, but also demonstrate that the
proposed multiplier helps the synthesis tool to optimize the
FPGA’s resources usage. The KOA-LFSR algorithm has a
very regular structure from which the synthesis tool takes
advantage and optimizes the result. In Fig. 6, the area and
time tendency, when the field size increases, are observed
showing a better performance for the proposed KOA-LFSR
algorithm.

In Table III, the proposed multiplier is compared to a
different Karatsuba-Ofman Multiplier using the same
device. A direct comparison with other works is difficult
because to the best of our knowledge, other works do not
consider the cost of the KOA multiplication and the
reduction step together. Some authors only work on the
polynomial multiplier; others focus on the reduction for
general polynomials. Moreover, in order to compare
different hardware architectures, the same FPGA devices
should be considered, because it would not be fair to
compare the required area on a 4-in LUT FPGA versus a 6-
in LUT FPGA.

In [5], a multiplier based on the BKM technique is
presented. It truncates the recursion at a predefined number
of bits and then uses a more efficient multiplier. The idea in
this work is that for small multipliers there are better
multipliers than the KOA approach. Thus, in this work the

TABLE II. Irreducible polynomials used to validate KOA-LFSR.

()f x = Recommended
167 6 1x x+ +
191 9 1x x+ + Certicom

233 74 1x x+ + NIST
239 36 1x x+ + Certicom
359 68 1x x+ + NIST
409 87 1x x+ + NIST

131 13 2 1x x x x+ + + + Certicom
163 7 6 3 1x x x x+ + + + NIST
277 12 6 3 1x x x x+ + + +
283 12 7 5 1x x x x+ + + + NIST
571 10 5 2 1x x x x+ + + + NIST

 8

[Downloaded from www.aece.ro on Friday, May 31, 2013 at 15:45:31 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 13, Number 2, 2013

recursion is truncated at different levels. Experimental tests
with are presented with best results are
achieved when . This work reports the number of
slices used and the time required. As a reduction step, the
classical method explained in Section III.A is used.

{4,8,16}n∈
8n =

In [9], a KOA based multiplier with pipelining is
presented. This multiplier truncates KOA's recursive calls
after some steps and thereafter the Classic Method is used.
Pipeline registers are placed between every KOA recursive
call. The proposed approach is compared to its more similar
experimental case. This design is assessed considering
several pipeline stages in order to find the best compromise
between area and time. The used modular reduction strategy
is not explicitly mentioned.

In [7], authors perform a detailed analysis of several
KOA-based multipliers implemented in FPGAs and ASICs.
This work considers multipliers that are a mix of the KOA
and the Classic algorithms. First, it analyzes separately both
approaches and realizes that the classic method is better for
small fields. Then, it implements a KOA multiplier that
truncates recursive calls and executes small multipliers with
the classic method. The KOA multiplier used on that work
uses a splitting strategy very similar to the one used in this
research. In [7], experiments with several multipliers were
carried out. In order to provide a fair comparison for the
research herein presented, those approaches that do not
consider the modular reduction but which are closely related
to this study were chosen. That work also presents place-
and-route results, however a direct comparison is not
possible because the classic method implementation is
carried out manually. Their results show the number of
LUTs required in their design.

In [8], several combinations of parallel and sequential
multipliers are provided. Results for a sequential 240-bit
multiplier are presented, for comparison with the proposed
KOA-LFSR approach a 239-bit multiplier is selected.

In [10], the number of slices used by the architecture is

reported, for comparison the same parameter has been used.
This paper explores different architectures of Karatsuba
multipliers, some of them are fully parallel while others are
a hybrid of parallel and sequential multipliers. The fastest
(fully parallel) and the smallest architectures are shown. The
reduction step is not considered in this research. Because,

 is only considered as a power of 2, fields closer to 128
and 256 are chosen for comparison. Exact 128 and 256
fields are not selected because to the best of our knowledge,
there are not irreducible polynomials reported for these
fields.

m

VI. CONCLUSIONS
In this paper, a novel multiplier called KOA-LFSR has

been presented. The proposed approach is a modification of
the original Karatsuba-Ofman algorithm (KOA) to perform
modular multiplication in . Contrary to the original
Karastuba-Ofman multiplier that performs only the
multiplication step, the KOA-LFSR performs both
multiplication and modular reduction. An array of Linear
Feedback Shift Registers connected in cascade to carry out
the reduction is used, this array is computed during KOA
recursive calls. The proposed multiplier performs better than
the original KOA with Classical Reduction, saving area
resources and achieving better timing. It is important to
notice that the way of splitting the input operands is crucial
for achieving an optimal performance. The splitting of input
operands as shown in Equation

(2)mGF

(15) resulted in the best way
to integrate the reduction step in the KOA algorithm.
Because the LFSR is a regular and compact module, the
synthesis tool optimally mapped this module leading to a
better usage of hardware resources. For future work a hybrid
multiplier will be tackled, where recursive calls can be
truncated at a specific value and simpler multipliers would
be used such as the Scholarbook one or multipliers
embedded in the same FPGA device.

a. b.

c. d.
Figure 6. Area and delay for Fully Parallel KOA-LFSR Multiplier for . BKM with Classical Reduction. Proposed Multiplier (2)mGF
a. Trinomials area (LUTs). b. Trinomials minimum clock period (ns). c. Pentanomials area (LUTs). d. Pentanomials minimum clock period (ns).

 9

[Downloaded from www.aece.ro on Friday, May 31, 2013 at 15:45:31 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 13, Number 2, 2013

TABLE III. COMPARATIVE BETWEEN THIS ARCHITECTURE AND OTHER JOBS.

Ref. Device m Fully
Parallel

Includes
reduction Area Time

(ns)
[5] Virtex E 191 YES YES 6265 Slices 45.889

This Virtex E 191 YES YES 7093 Slices 19.308
[7] Virtex 5 163 YES NO 7488 LUTs --

This Virtex 5 163 YES YES 7786 LUTs 5.468
[8] Virtex II 128 NO NO 2473 Slices 378
[8] Virtex II 128 NO NO 3978 Slices 153

This Virtex II 131 YES YES 4147 Slices 10.122
[8] Virtex II 240 NO NO 4839 Slices 290

This Virtex II 239 YES YES 10510 Slices 10.710
[9] Virtex 5 128 YES YES 6941 LUTs 5.487

This Virtex 5 131 YES YES 6162 LUTs 5.753
[10] Spartan 3 128 YES NO 10172 Slices 59.52
[10] Spartan 3 128 NO NO 2528 Slices 515.64
This Spartan 3 131 YES YES 4205 Slices 13.454
[10] Spartan 3 256 YES NO -- 69.77
[10] Spartan 3 256 NO NO 8276 Slices 569.04
This Spartan 3 239 YES YES 13620 Slices 15.046

REFERENCES
[1] B. Schneier, Applied Cryptography, 2nd edition. Wiley, 1996, p. 758.
[2] A. Karatsuba and Y. Ofman, “Multiplication of Multidigit Numbers

on Automata,” Soviet Physics-Doklady, vol. 7, no. 7, pp. 595–596,
1963.

[3] M. Knezevic, F. Vercauteren, and I. Verbauwhede, “Faster
Interleaved Modular Multiplication Based on Barrett and
Montgomery Reduction Methods,” IEEE Transactions on Computers,
vol. 59, no. 12, pp. 1715–1721, Dec. 2010.

[4] G. X. Yao, J. Fan, R. C. C. Cheung, and I. Verbauwhede, “A High
Speed Pairing Coprocessor Using RNS and Lazy Reduction,” IACR
Cryptology ePrint Archive, vol. 2011, p. 258, 2011.

[5] A. B. El-sisi, S. M. Shohdy, and N. Ismail, “Reconfigurable
Implementation of Karatsuba Multiplier for Galois Field in Elliptic
Curves,” Novel Algorithms and Techniques in Telecommunications
and Networking, pp. 97–92, 2010.

[6] H. Fan, J. Sun, M. Gu, and K.-Y. Lam, “Overlap-free Karatsuba-
Ofman polynomial multiplication algorithms,” IET Information
Security, vol. 4, no. 1, p. 8, 2010.

[7] G. Zhou, H. Michalik, and L. Hinsenkamp, “Complexity Analysis and
Efficient Implementations of Bit Parallel Finite Field Multipliers
Based on Karatsuba-Ofman Algorithm on FPGAs,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol.
18, no. 7, pp. 1057–1066, Jul. 2010.

[8] M. Machhout, M. Zeghid, W. El Hadj Youssef, B. Bouallegue, A.
Baganne, and R. Tourki, “Efficient Large Numbers Karatsuba-Ofman
Multiplier Designs for Embedded Systems,” in Conference of the
World Academy of Science Engineering and Technology 28, 2009,
pp. 992–1001.

[9] G. Zhou, H. Michalik, and L. Hinsenkamp, “Improving Throughput
of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs,”
Reconfigurable Computing: Architectures, Tools and Applications,
vol. 5453, pp. 193–203, 2009.

[10] W. El hadj youssef, M. Machhout, M. Zeghid, B. Bouallegue, and R.
Tourki, “Efficient hardware architecture of recursive Karatsuba-
Ofman multiplier,” in 2008 3rd International Conference on Design
and Technology of Integrated Systems in Nanoscale Era, 2008, pp. 1–
6.

[11] Y. L. Zhang, G. C. Shou, Y. H. Hu, and Z. G. Guo, “Low Complexity
GF(2m) Multiplier Based on Iterative Karatsuba Algorithm,”
Advanced Materials Research, vol. 546–547, pp. 1409–1414, Jul.
2012.

[12] A. Weimerskirch and C. Paar, “Generalizations of the Karatsuba
Algorithm for Efficient Implementations,” Cryptology ePrint Archive,
vol. 2006/224, 2006.

[13] J. von zur Gathen and J. Shokrollahi, “Efficient FPGA-Based
Karatsuba Multipliers for Polynomials over F2,” Selected Areas in
Cryptography, vol. 3897, pp. 359–369, 2006.

[14] N. S. Chang, C. H. Kim, Y.-H. Park, and J. Lim, “A Non-redundant
and Efficient Architecture for Karatsuba-Ofman Algorithm,”
Information Security, vol. 3650, pp. 288–299, 2005.

[15] N. A. Saqib, F. Rodríguez-Henríquez, and A. Díaz-Pérez, “A parallel
architecture for fast computation of elliptic curve scalar multiplication
over GF(2m),” in 18th International Parallel and Distributed
Processing Symposium, 2004. Proceedings., 2004, vol. 00, no. C, pp.
144–151.

[16] M. Ernst, M. Jung, F. Madlener, S. A. Huss, and R. Bl, “A
Reconfigurable System on Chip Implementation for Elliptic Curve
Cryptography over GF(2m),” in Cryptographic Hardware and
Embedded Systems - CHES 2002, vol. 2523, B. Kaliski, C. Koc, and
C. Paar, Eds. Springer Berlin / Heidelberg, 2003, pp. 381–399.

[17] F. Rodríguez-Henríquez and C. K. Koc, “On Fully Parallel Karatsuba
Multipliers for GF(2m),” in Computer Science and Technology 2003,
2003.

[18] M. Jung, F. Madlener, M. Ernst, and S. A. Huss, “A Reconfigurable
Coprocessor for Finite Field Multiplication in GF(2m),” in IEEE
Workshop on Heterogeneous Reconfigurable Systems on Chip
(HRSoc'02), 2002.

[19] M. Morales-Sandoval, C. Feregrino-Uribe, and P. Kitsos, “Bit-serial
and digit-serial GF(2m) Montgomery multipliers using linear
feedback shift registers,” IET Computers & Digital Techniques, vol.
5, no. 2, p. 86, 2010.

[20] J. von zur Gathen and J. Gerhard, “Arithmetic and factorization of
polynomial over (extended abstract),” in Proceedings of the 1996
international symposium on Symbolic and algebraic computation -
ISSAC '96, 1996, pp. 1–9.

[21] D. G. Cantor, “On arithmetical algorithms over finite fields,” Journal
of Combinatorial Theory, vol. 50, no. 2, pp. 285 – 300, 1989.

[22] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems
Testing and Testable Design, 1st ed. WILEY-IEEE PRESS, 1994.

[23] M. M. Knezevic, K. Sakiyama, J. Fan, and I. Verbauwhede, “Modular
Reduction in GF(2m) without Precomputational Phase,” in
International Workshop on the Arithmetic of Finite Fields (WAIFI
2008), 2008, vol. 5130, pp. 77–87.

[24] C. K. Koc, “Montgomery reduction with even modulus,” IEE
Proceedings of Computers and Digital Techniques, vol. 141, no. 2, pp.
314–316, 2010.

[25] F. Rodríguez-Henríquez, A. Díaz-Pérez, N. A. Saqib, and C. K. Koc,
Cryptographic Algorithms on Reconfigurable Hardware. Boston, MA:
Springer US, 2006.

[26] “FIPS PUB 186-3 Digital Signature Standard (DSS),” NIST - Federal
Information Processing Standars Publication, 2009.

 10

[Downloaded from www.aece.ro on Friday, May 31, 2013 at 15:45:31 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

