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Abstract—In this paper a novel  multiplier based on 

Karatsuba-Ofman Algorithm is presented. A binary field 
multiplication in polynomial basis is typically viewed as a two 
steps process, a polynomial multiplication followed by a 
modular reduction step. This research proposes a modification 
to the original Karatsuba-Ofman Algorithm in order to 
integrate the modular reduction inside the polynomial 
multiplication step. Modular reduction is achieved by using 
parallel linear feedback registers. The new algorithm is 
described in detail and results from a hardware 
implementation on FPGA technology are discussed. The 
hardware architecture is described in VHDL and synthesized 
for a Virtex-6 device. Although the proposed field multiplier 
can be implemented for arbitrary finite fields, the targeted 
finite fields are recommended for Elliptic Curve 
Cryptography. Comparing other KOA multipliers, our 
proposed multiplier uses 36% less area resources and improves 
the maximum delay in 10%. 

(2 )mGF

 
Index Terms — Data security, Cryptography, Public key, 

Algorithm design and analysis, Field programmable gate 
arrays. 

I. INTRODUCTION 
Nowadays binary field arithmetic has achieved great 

importance thanks to different applications like 
cryptography and error-correcting code. Several algorithms 
used by these applications are based on this kind of 
arithmetic [1]. Among them, one of the most relevant is 
Elliptic Curve Cryptography, which provides the same 
security levels as RSA but uses shorter key lengths, which is 
desirable for wireless and mobile environments. 

Among binary field arithmetic operations, multiplication 
is one of the most expensive. Typically a multiplication on 

 is a two steps process: 1) a polynomial 
multiplication, and 2) a modular reduction step. The 
Karatsuba-Ofman Algorithm (KOA) [2] performs the first 
step. Techniques, such as Barret reduction [3] or Lazy 
reduction [4], can be used for modular reduction. Improving 
multiplication performance is tackled in [5]-[18].  

(2 )mGF

There are different algorithms to perform binary field 
multiplications, such as the Montgomery [19], the FFT [20] 
and the Cantor [21] multipliers. The Karatsuba-Ofman 
algorithm [2] was the first to achieve below  
complexity and, additionally it is well suited for hardware 
implementation because its structure is highly parallel. 

2( )O n

In this paper, a novel  multiplier based on the 
original KOA algorithm that integrates the modular 
reduction step is introduced. Usually, the reduction step is 
performed independently and is not considered in the 
original KOA. The reduction step is executed by parallel 
linear feedback shift registers. An analysis on the theoretical 
cost in terms of area and maximum delay is carried out for 
the proposed multiplier and the classical KOA with a 
separate reduction step. This analysis considers an 
irreducible polynomial defining the finite field  as 
trinomials. The new KOA algorithm is developed on FPGA 
technology, using VHDL for hardware description and the 
Xilinx ISE tools for implementation. Results in terms of 
area and time are presented for finite fields recommended in 
Elliptic Curve Cryptography. The proposed multiplier 
improves resources usage and processing time when 
compared to the KOA algorithm with Classical Reduction. 

(2 )mGF

(2 )mGF

The rest of this document is organized as follows: Section 
2 explains LFSRs and their use in binary field arithmetic 
and realization in hardware. Section 3 explains the KOA 
algorithm for multiplication in including the 
Classical Reduction step. Section 4 describes the proposed 
modification for the KOA algorithm and the hardware 
architecture is presented providing a comparison with the 
classical approach. Details of the architecture 
implementation and results are discussed in Section 5. 
Finally, conclusions of this research are drawn in Section 6. 

(2 )mGF

II. LFSR AND PARALLEL LFSR (PLFSR) IN  (2 )mGF

A LFSR is a -bit shift register that pseudo-randomly 
scrolls among 

n
2n 1−  states at high speed [22]. It requires 

minimal logic to generate binary sequences. After reaching 
all states, the output sequence is repeated cyclically. 

A LFSR of length  has  memory cells which together 
form the initial state (

n n

0 1 1, , , ns s s − ) of the shift register. The 
input bit for the LFSR is a linear function of its current or 
previous state. Several bits of the shift register value are 
driven by the XOR function, because this and the inverse-
XOR are the only 1-bit linear functions. The selection of 
those bits is represented by a polynomial or characteristic 
polynomial over {0,1}. If the input bit for the LFSR is a 
linear function of bits 0 1,s s  and 1ns − , then the LFSR 
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characteristic polynomial is 1( ) 1 nf x x x −= + + ; thus any 
LFSR can be represented as a x  polynomial variable. In 
finite fields, this polynomial must be irreducible which 
means it cannot be split in the product of two polynomials. 

An element ( )A x  in the field  can be represented 
as a -order polynomial as follows: 

(2 )mGF
( 1m − )
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where ( )A x  is normally represented as a -bit vector 
containing all coefficients defining its corresponding 
polynomial, that is, 

m

1 2 1 0( ) ( , , , , )m mA x α α α α− −= .  
Addition (and subtraction) in is a bitwise XOR 

operation between operands bit vectors resulting in a trivial 
operation in software or hardware. On the contrary, 

 multiplication and division are more expensive 
operations. These operations usually require the modular 
reduction step

(2 )mGF

(2 )mGF

( ) mod ( )A x f x , where ( )f x  is an irreducible 
-order polynomial that generates . m (2 )mGF ( )f x  is 

expressed by Equation (2), considering . 0 1mf f= =

 
1

1 2 1
1

( ) 1 (1, , , , ,1)
m

m i
i m m

i
f x x f x f f f

−

− −
=

= + + =∑   (2) 

Thus, ( )xA x  becomes a shift to the left operation on 
( )A x  leading to a -bit vector, ( 1m + )

1 2( ) ( , ,m mxA x α α− −= . 1 0, , ,0)α α . The resulting bit vector 
is the same with an extra ‘0’ at the least significant position. 
If 1 0mα − = , a reduction is not necessary. However, 
if , the resulting polynomial is reduced by 1 1ma − = ( )f x , 
following ( ) ( )xA x f x⊕ . Equation (3) defines ( )xA x  
considering : 0 1mf f= =

   (3) 2 1 1 3 2 1

0 1 1 1

( ) mod ( )
( [ ], [ ],

[ ], )
m m m m m m

m m

xA x f x
f f

f a
α α α α
α α

− − − − − −

− −

=
⊕ ⊕

⊕
,

where  represents a bitwise XOR operation and  
represents a bitwise AND operation. This expression is well 
modeled by the LFSR shown in Fig. 1a. The combinatorial 
logic (CL-LFSR) shown in Fig. 1a performs the required 
arithmetic to compute 

⊕

( ) mod ( )xA x f x . Therefore,  CL- d

a.  
 
b.       

 
Figure 1. Linear feedback shift register structures. a. LFSR basic structure. 
b. Parallel LFSR (PLFSR) for computing ( ) mod ( )dx A x f x   

LFSR blocks could be connected in a cascade fashion to 
implement a parallel LFSR (PLSFR) and to obtain 

( ) mod ( )dx A x f x  in just one iteration, as it is shown in Fig. 
1b. More details on the LFSR and the PLFSR are described 
in [19]. 

III. KARATSUBA-OFMAN ALGORITHM  FOR 
MULTIPLICATION IN  (2 )mGF

A finite field  is defined by an irreducible -order 
polynomial

(2 )mGF m
( )f x . Considering ( )A x  and  being  ( )B x

( 1m )− -order polynomials in  with 
coefficients

(2 )mGF
, {0,i i 1}α β ∈ . A field multiplication ( )· ( )A x B x  

in  results in another field element  that is 
computed in two steps: 

(2 )mGF ( )C x

1. '( ) ( )· ( )C x A x B x= , where  is a 2'( )C x 2m − -order 
polynomial. 

2. Modular reduction, . ( ) '( ) mod ( )C x C x f x=

There are several algorithms to compute , among 
them and widely known is the classical or Schoolbook 
method consisting of a shift-and-add scheme. Most of the 
proposed field multiplication algorithms are based on this 
method whose complexity is . In 1962, a 
multiplication algorithm was published by Karatsuba and 
Ofman [2] with  complexity. The KOA algorithm 
computes the first step of a field multiplication by using the 
divide and conquer technique. The multiplication  is 
computed recursively using three field multiplications with 
low order operands. 

'( )C x

2( )O n

2log 3(O n )

'( )C x

For simplicity, lets consider that . This 
means that all field elements in  are power of 2 bit-
vectors, and that 

2 , 0tm t= ≥

(2 )mGF
2m  is always a power of 2. 

KOA splits the multiplier and multiplicand as it is shown 
in the following equation: 

 1 2 22 1( ) ( , , , , , , )
H L

mm m

A A

mA x 0α α α α α− − −=   (4) 

Thus, the next equations are sustained: 
 2( ) H m LA x A x A= +    (5) 
 2( ) H m LB x B x B= +   (6) 

where , ,H L HA A B  and LB  are 2m -order polynomials, and 
( ) ( )· ( )C x A x B x′ =  is calculated as: 

 
2

2

1 0

2

2

( ) ( )·( )m m

m

H L H L

m

C x A x A B x B
z x z x z

= + +

= + +
  (7) 

where, 

 
2

1

0

·

· ·

·

H H

H L L H

L L

z A B

z A B A B

z A B

=

+

=

=   (8) 

At this point, ( )· ( )A x B x  requires four multiplications 
with operands that are half the size the initial ones. KOA 
can be used recursively to compute these new 
multiplications and it reduces the number of multiplications 
to three at the cost of some more additions by redefining , 1z

 4 

[Downloaded from www.aece.ro on Friday, May 31, 2013 at 15:45:31 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]



Advances in Electrical and Computer Engineering                                                                      Volume 13, Number 2, 2013 

as shown in Equation (9). 
   (9) 1 2( )·( )H L H Lz A A B B z z= + + − − 0

In , additions and subtractions are the same and 
are performed as bitwise XOR operations, thus redefining 

 has no substantial cost. The recursive Karatsuba-Ofman 
method for multiplying two polynomials 

(2 )mGF

1z
( ), ( )A x B x  in 

 is shown in Algorithm 1. (2 )mGF
The KOA algorithm receives as input the multiplier and 

multiplicand as well as their bit-length . In the first call 
. At each recursive call, operands are divided 

resulting in 

( )n
n m=

2n -bit vectors. The recursive KOA finishes 
when , returning as a result the bitwise AND of 1n = ( )A x  
and . ( )B x

Steps 7-8 in Algorithm 1 perform a recursive call to KOA 
and the resulting polynomials ,  and  are (0z 1z 2z 1)n − -bit 
vectors. In step 9, the final multiplication  
is calculated, resulting in a ( )-order polynomial. When 
all recursive calls are finished, the final result is a ( 2 1

( ) ( )· ( )C x A x B x′ =
2n −1

m − )-
order polynomial. A graphical representation of ( )C x′  
operation is depicted in Fig. 2. 

Up to this point, it is assumed that , but in many 
applications, such as cryptography, m  is not a power of 2. 
One strategy is padding with 0’s the bit vector 
representation of the input operands until reaching a power 
of 2 length, but with this strategy many gates remain 
unused. Thus, a modification to KOA called Binary 
Karatsuba Multiplier. (BKM) was proposed in [17]. More 
details on this technique are provided next. 

2km =

A. Reduction step 
Algorithm 1 calculates 2 1

2( ) 0m mC x z x z x z′ = + + , where 
 is a ( )-bit vector that does not belong to 

 and needs to be reduced 
( )C x′ 2m −1
(2 )mGF mod ( )f x . 

For general irreducible polynomials ( )f x , specialized 
reduction methods must be applied, such as the Barret  

 
Algorithm 1 KOA[ ,n ( )A x , ]: Recursive 
Karatsuba-Ofman Algorithm 

( )B x

Input: ; 2 , 0,tn t n= ≥ ≤ m
      ( )A x ,  -bit vectors ( )B x n
Output:  '( ) ( )· ( )C x A x B x=
1: IF  1n =
2:    RETURN A B  
3: ENDIF 
4: 2( ) ( ) ( )nH LA x A x x A x← +  

5: 2( ) ( ) ( )nH LB x B x x B x← +  

6: 2z ← KOA [ ]2 , ,H HA Bn  

7: 0z ← KOA [ ]2 , ,L LA Bn  

8: 1z ← KOA 2 0[ , ( ), ( )]2 L H L HA A B Bn z+ + + + z  

9: 2 1
2

0'( ) n nC x z x z x z← + +  

10: RETURN  '( )C x
 

 
Figure 2. C(x) computation at step 9 of KOA algorithm 

 
reduction method [23] or the Montgomery method [24]. 

For special ( )f x  classes, such as trinomials and 
pentanomials, the reduction step of KOA algorithm can be 
performed using a matrix of XOR gates [25]. This technique 
has been used in KOA hardware implementations [5], [16], 
[17]. The reduction technique is based on the fact that if 

( ) ( )mf x x g x= +  , where ( )g x  is a low order ( m< ) 
polynomial, the equivalence ( ) mod ( )mx g x f x≡  is 
sustained. Therefore, a trinomial ( )f x  with form 

( ) 1m af x x x= + +  expresses  polynomial in the 
following way: 

'( )C x
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+   (10) 

The last expression in Equation (10) states that  can 
be formulated as a -bit vector that results from adding 
five terms obtained from , achieving the desired 
reduction 

( )C x
m

'( )C x
mod ( )f x . Graphically, this reduction is shown 

in Fig. 3. 

B. Theoretical cost analysis for KOA with Classical 
Reduction 
Let  be the cost in area of a KOA hardware 
implementation. If 

S
1m = , the total cost is only one 1-bit 

AND gate. If , the total cost is given by three KOA 
recursive calls with half size operands: 

1m >

23· mS . In addition, 
the following XOR gates are also needed: 

• Two ( 2n ) XOR gates to perform ( L HA A+ ) and 
( L HB B+ ), Algorithm 1, step 8. 

• Two ( 1n − ) XOR gates to add three ( 1n − )-bit 
numbers, Algorithm 1, step 8. 

• One ( 1n − )-bit XOR to concatenate  and , 
Algorithm 1, step 9. 

2z 1z

The total number of XOR gates required is 4n 3− . The 
reduction step cost is given by the number of XOR gates 
necessary to add five terms of Equation (10), which is 
2m a+ , where  corresponds to the power of the second 
term in the irreducible polynomial 

a
( )f x . 

The total area cost for the KOA algorithm considering the 
Classical Reduction technique for trinomials, is given by the 

       5
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Figure 3.  computation, where ( ) '( ) mod ( )C x C x f x= ( )f x  is a trinomial. 

 
recurrence in the next equation: 

 2

2

1· if 1
3 4 3· if 
3 6 3· if 

n n

n

AND n
S n XOR nS
S n b XOR n

=⎧
⎪ + − ≠= ⎨
⎪ + + − =⎩

m
m

  (11) 

where , for any . 2tm = 0t ≥
Considering  as the time delay required for hardware 

implementation. Thus,  and 
T

AT XT  are the maximum delays 
for AND and XOR gates respectively. If , the total 
KOA delay is given by the AND gate in Algorithm 1, line 2. 
If , the three KOA calls in Algorithm 1, lines 7-8 can 
be performed in parallel, each with 

1m =

1m >

2mT time cost. However, 
KOA call at step 8 requires two additions, similar to the 
previous step, ( H LA A+ ) and ( H LB B+ ). These two 
operations can be performed in parallel with XT  delay. Once 
step 8 is completed, another two additions are required to 
calculate the cost of 2 XT . Finally, one addition is required at 
step 9, to add one XT  delay that leads to a total cost of 

2 4m XT T+ . Thus, the delay for the reduction step is 3 XT . 
Time complexity for KOA algorithm is given by the 
recurrence in the following equation: 

 2

2

if 1
4 if 
7 if 

n

A

Xn

Xn

T n
T T nT
T T n

=⎧
⎪ + ≠= ⎨
⎪ + =⎩

m
m

  (12) 

IV. KARATSUBA-OFMAN WITH MODULAR REDUCTION 
INTEGRATED 

In this section the novel KOA algorithm proposed in this 
research, which integrates the modular reduction step within 
the algorithmic procedure, is presented. Considering 
Algorithm 1, in step 9,  is multiplied by 2z nx  and  by 1z

2nx . The proposed approach takes advantage of the module 
operation and integrates the modular reduction step within 
KOA algorithm through Equation (13). 

 2 1

2 1

2

2
0

( ) ( ) mod ( )
( 0) mod ( )

mod ( ) mod ( )

n

n

n

n

C x C x f x
z x z x z f x

z x f x z x f x z

′=

= + +

= + +

  (13) 

In the previous section, it was demonstrated that Equation 
(13) can be solved using LFSR. Following this approach, 
two PLFSR are required to compute  
and

2 mod ( )nz x f x
2

1 mod ( )nz x f x . Therefore, the total number of shifts 
required are: n  shifts for  and 2 mod ( )nz x f x 2n  shifts for 

2
1 mod ( )xnz x f . 
In order to identify the exact KOA's algorithmic stage 

where this modification needs to take place, because most 

applications do not use 2tm = , the field size is generalized 
to be of any size. Thus, the BKM technique is used as a 
starting point [17]. BKM considers that , where 

 is the largest power of 2 that is smaller than , and  
are the remainder bits. Then, instead of splitting the input 
polynomial in two equal size bit-vectors, both input 
polynomials are split according to the next equation: 

2km = + d
2k m d

 1 02 2 1
( ) ( , , , , , )k k

H L

m

A A

A x α α α α− −
=   (14) 

where HA  is a d -bit vector and LA  is a -bit vector. 2k

The BKM strategy is used to analyze where the PLFSRs 
are needed. In the first call , the resulting polynomial's 
order is 

n m=
2m 1− , thus a reduction is needed. For computing 

 and , input operands size is , and results size is 0z 1z 2k

12k+ 1− . Because  is the highest power of 2 that is smaller 
than ; 

2k

m 12k+ 1−  is consequently higher than , therefore a 
reduction is needed for  and . To compute , if 

m

0z 1z 0z
2d m> , the result is 2 1d m− >  and a reduction is also 

necessary. 
Before analyzing subsequent recursive calls in the BKM 

strategy, it is observed that several PLFSRs are required 
resulting in an expensive hardware architecture. Hence, a 
different strategy to optimize the number of PLFSRs is 
approached. The proposed strategy is similar to that used in 
[7] and [12]. It consists in splitting the input bit vectors by 
half using the function ceiling  to ensure an integer 
result, since  could be an odd number, see next equation: 

⎡ ⎤⋅
m

 1 02 22 1( ) ( , , , , , , )
H L

m mm m

A A

A x α α α α α⎡ ⎤ ⎡− − ⎤⎢ −⎥ ⎢ ⎥
=   (15) 

where LA  size is 2m⎡ ⎤⎢ ⎥   and HA  size is 2m m− ⎡ ⎤⎢ ⎥ . This 
approach is used in every algorithmic recursive call. To 
determine if a reduction is necessary, the first call is 
assessed with n m= , the input operands size is  and the 
result size is 

m
2m 1− , thus a reduction is necessary. For  

and , inputs size is 
0z

1z 2m⎡ ⎤⎢ ⎥ ; if m  is even result size is 
1m − , if  is odd result size is . Reduction is not 

necessary in both cases. For , inputs size is 
m m

2z 2m m− ⎡ ⎤⎢ ⎥ ; if 
 is even result size is , if  is odd result size is m 1m − m

2m − . Thus, reduction is not required. In recursive calls, 
operands are smaller and no more reductions are needed. In 
total, only one reduction at the first call is necessary 
following the proposed approach. 

Algorithm 2 presents the proposed novel Karatsuba- 
Ofman algorithm based on LFSR. It is worth noticing that 

 result is already reduced( )C x mod ( )f x . Steps 4 and 5 use 
the splitting strategy explained before in Equation (15) 
whereas steps 6-8 perform the recursive calls. Step 9 
evaluates n m=  which is true only for the first call when 
using PLFSRs. For the rest of the calls  and partial 
results sizes are smaller than  therefore a reduction is not 
needed. 

n m≠
m

As an example, consider the binary field , see 
Fig. 4. During the first call, KOA-LFSR splits the input 
operands following Equation 

163(2 )GF

(15) and makes three recursive  

 6 
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Algorithm 2 KOA-LFSR[ ,n ( )A x , ]: 
Recursive Karatsuba-Ofman Algorithm 
with reduction step integrated using 
LFSR for field multiplication in  

( )B x

(2 )mGF

 

Input:  an integer smaller or equal to n
       ; m ( )A x ,  ( ) (2 )mB x ∈GF
Output:  ( ) ( )· ( ) mod ( )C x A x B x f x=
1: IF  1n =
2:    RETURN A B  
3: ENDIF 
4: 2( ) ( ) ( )nH LA x A x x A x⎡ ⎤⎢ ⎥← +  

5: 2( ) ( ) ( )nH LB x B x x B x⎡ ⎤⎢ ⎥← +  

Figure 4. Recursive calls tree for KOA-LFSR algorithm for multiplication 
in . 163(2 )GF

 
0

6: 2z ← KOA-LFSR [ 2 , , ]H Hn An⎡ ⎤⎢ ⎥− B  

7: 0z ← KOA-LFSR [ ,2 , ]L LAn B⎡ ⎤⎢ ⎥  

8: 1z ← KOA-LFSR [ , (2 ), (L H L HA A Bn B+ +⎡ ⎤⎢ ⎥ )] 
              2 0z z+ +

9: IF  n m=
10:  2

2
2

0
2

1( ) mod ( ) mod ( )n nC x z x f x z x f x z⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥← +

 outputs, and most XOR gates perform a simple right shift 
( 1m i m iα α− − −← ), see Equation (3). Simple shifts have no 
cost in hardware; therefore from all gates in Fig. 1a, only 
one XOR gate is necessary to calculate ( )xA x  when ( )f x  
is a trinomial. For pentanomials, three XOR gates would be 
required. Because the number of shifts is fixed ( 2 2m⎡ ⎤⎢ ⎥  for 

2
2

2 mod ( )mz x ⎡ ⎤⎢ ⎥ f x  and 2m⎡ ⎤⎢ ⎥  for 2
1 mod ( )mz x f⎡ ⎤⎢ ⎥

+

x ), the 
number of XOR needed for these reductions is the number 
of shifts multiplied by the number of XORs per shift. A total 
of 3 2m  XOR gates for trinomials and 9 2m  for 
pentanomials are required which is an improvement over the 
traditional approach. Finally, Equation (16) summarizes 
trinomials cost: 

 
11: ELSE 
12:    2

1
2

2 0
2( ) n nC x z x z x z⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥← + +  

13: ENDIF 
14: RETURN  ( )C x

 2

2

1· if 1
3 4 3· if 
3 11 3· if2  

n

n

n

n

AND n
S n XOR nS
S XOR

=⎧
⎪ m

n m
+ − ≠= ⎨

⎪ + − =⎩

  (16)  
calls (steps 6-8) with  at a 2nd recursion 
level. In the second call  and KOA-LFSR splits the 
inputs again and invokes three recursive calls 
with . For , recursive calls are 
with , this call is at the third recursion level. 
Splits and recursive calls continue until the basic case where 

 is performed and multiplication is carried out with a 
simple AND gate. 

{95,96,96}n∈
95n =

{47, 48, 48}n∈ 96n =

{48, 48, 48}n∈

1n =

Time delay remains as formulated by Equation (12) for all 
recursive calls with n m≠ , that is 2 4n XT T+ . For the first 
call, PLFSR add some extra delay. Having PLFSR imply 
several LFSR connected in cascade, however corresponding 
time delay is not equivalent to the number of LFSRs. A 
XOR is also shifted and requires  shifts to return to the  m

a.  

Fig. 5 shows a diagram with the fully parallel KOA 
algorithm based on the LFSR multiplier. In Fig. 5a, the first 
call case using PLFSRs is shown. In Fig. 5b the recursive 
calls case is drawn, where simple shifts are used instead of 
PLFSR. 

A. Theoretical cost analysis for KOA-LFSR multiplier 
This novel approach leads to the next space and time 
complexity analysis. To simplify this analysis, only the 
special case of having an even  is considered, that 
is:

m
2m m=⎡ ⎤⎢ ⎥ 2 . It has been stated that PLFSRs are used 

only in the first algorithmic call. Thus, all recursive calls, 
where , have the same cost according to Equationn m≠ (11). 

b.  

In the first KOA-LFSR call, two ( 2m )
)

 XOR gates to 
perform ( L HA A+  and (  are needed, see 
Algorithm 2, step 8. Also, two (  XOR gates to add , 

 and ( )

)
)

)

L HB B+

1m − 0z

2z (L H L HA A B B+ +  are required. Finally, two 
 XOR gates to compute the addition of step 10 in 

Algorithm 2 are needed. To calculate the PLFSR cost, a 
special case with 

( 1m − )

( )f x  as a trinomial of the form 
 is considered. It is observed that only 
, as a consequence, most AND gates have 

( ) 1m af x x x= + +

0 1m m af f f−= = =

Figure 5. Fully Parallel Karatsuba-Ofman Multiplier based on LFSR for 
. a. First call ((2 )mGF n m= ). This call uses Parallel Linear Feedback 

Shift Registers. b. Recursive calls only use simple shift. 
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TABLE I. AREA COST ( ) AND TIME DELAY ( ) FOR KOA WITH CLASSICAL REDUCTION AND THE PROPOSED KOA-LFSR 
CONSIDERING THE TRINOMIAL CASE. 

nS nT

Parameter Classical KOA KOA-LFSR Case 

nS  2

2

1·
3 4 3·

3 6 3·
n

n

AND
S n XOR

S n b XO

+ −

+ + − R

 2

2

1·
3 4 3·

3 ·211 3
n

n

AND
S n XO

S Xn

R

OR

+ −

+ −

 
if 1
if 
if 

n
n m
n m

=
≠
=

 

nT  2

2

4

7

A

Xn

n X

T
T T

T T

+

+

 2

2

4

6

A

Xn

n X

T
T T

T T

+

+

 
if 1
if 
if 

n
n m
n m

=
≠
=

 

 
original position. Most gates are simple shifts when using 
trinomials and pentanomials, such as ( )f x , with no 

hardware cost. Because at most there are 2 2m⎡⎢ ⎤⎥  LFSRs 
connected, only 2 XOR gates are actually in cascade. For 
trinomials, which are the worst case, the PLFSR time delay 
is 2 XT . Hence, the time delay for the first call is 

2 4 2n X XT T T+ + . For pentanomials, PLFSR’s delay is 4 XT , 
because when a XOR returns to the original position, it also 
goes through other 2 XOR gates. In this case, the first call 
delay is 2 4 4n X XT T T+ + . The overall time delay for the 
proposed multiplier considering trinomials is expressed by 
the next equation: 

 2

2

if 1
4 if 
6 if 

n

A

Xn

Xn

T n
T T nT
T T n

=⎧
⎪ + ≠= ⎨
⎪ + =⎩

m
m

 

  (17) 

In Table I, a theoretical cost comparison for the KOA 
algorithm with Classical Reduction and the proposed KOA-
LFSR is presented considering the trinomial case. It is 
observed that the proposed KOA-LFSR algorithm achieves 
a reduction in hardware cost and in time delay required to 
implement the multiplier on a hardware platform. 

V. ARCHITECTURE IMPLEMENTATION AND RESULTS 
ANALYSIS 

To validate the proposed modification of the KOA 
algorithm, a fully parallel Karatsuba-Ofman Multiplier has 
been designed, simulated and synthesized. Different fields 
with irreducible polynomials considering both, trinomials 
and pentanomials are assessed, see Table II. These 
polynomials define finite fields recommended by the NIST 
for cryptographic applications [26], while the others are 
proposed by CERTICOM as a challenge1. For comparative 
purposes, results for a fully parallel Binary Karatsuba 
Multiplier using the Classical Reduction are presented. 

The proposed architecture was implemented using VHDL 
as a description language. For design validation, a C routine 
to generate test data vectors was created and ModelSim PE 
Student Edition 10.1c was used as simulation environment. 
For synthesis, Xilinx ISE 13.2 was used targeting a Xilinx 
Virtex-6 (xc6vlx240t) device. 

Fig 6 shows the synthesis results for trinomials and 
pentanomials. These graphs show the tendency of used 
LUTs and the minimum clock period achieved by each 
architecture. These results include the total hardware usage 

necessary for the multiplication and the reduction steps.  

1 http://www.certicom.com/index.php/curves-list, August 2012 

In Fig. 6, the improvement for the proposed KOA-LFSR 
algorithm in time and area is presented when compared to 
the BKM technique with Classical Reduction. Theoretical 
cost for the BKM technique with Classical Reduction is not 
provided.  

These results not only confirm the theoretical 
improvement shown in Table I, but also demonstrate that the 
proposed multiplier helps the synthesis tool to optimize the 
FPGA’s resources usage. The KOA-LFSR algorithm has a 
very regular structure from which the synthesis tool takes 
advantage and optimizes the result. In Fig. 6, the area and 
time tendency, when the field size increases, are observed 
showing a better performance for the proposed KOA-LFSR 
algorithm. 

In Table III, the proposed multiplier is compared to a 
different Karatsuba-Ofman Multiplier using the same 
device. A direct comparison with other works is difficult 
because to the best of our knowledge, other works do not 
consider the cost of the KOA multiplication and the 
reduction step together. Some authors only work on the 
polynomial multiplier; others focus on the reduction for 
general polynomials. Moreover, in order to compare 
different hardware architectures, the same FPGA devices 
should be considered, because it would not be fair to 
compare the required area on a 4-in LUT FPGA versus a 6-
in LUT FPGA. 

In [5], a multiplier based on the BKM technique is 
presented. It truncates the recursion at a predefined number 
of bits and then uses a more efficient multiplier. The idea in 
this work is that for small multipliers there are better 
multipliers than the KOA approach. Thus, in this work the  

 
TABLE II. Irreducible polynomials used to validate KOA-LFSR. 

( )f x =  Recommended 
167 6 1x x+ +   
191 9 1x x+ +  Certicom 

233 74 1x x+ +  NIST 
239 36 1x x+ +  Certicom 
359 68 1x x+ +  NIST 
409 87 1x x+ +  NIST 

131 13 2 1x x x x+ + + +  Certicom 
163 7 6 3 1x x x x+ + + +  NIST 
277 12 6 3 1x x x x+ + + +   
283 12 7 5 1x x x x+ + + +  NIST 
571 10 5 2 1x x x x+ + + +  NIST 
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recursion is truncated at different levels. Experimental tests 
with  are presented with best results are 
achieved when . This work reports the number of 
slices used and the time required. As a reduction step, the 
classical method explained in Section III.A is used. 

{4,8,16}n∈
8n =

In [9], a KOA based multiplier with pipelining is 
presented. This multiplier truncates KOA's recursive calls 
after some steps and thereafter the Classic Method is used. 
Pipeline registers are placed between every KOA recursive 
call. The proposed approach is compared to its more similar 
experimental case. This design is assessed considering 
several pipeline stages in order to find the best compromise 
between area and time. The used modular reduction strategy 
is not explicitly mentioned.  

In [7], authors perform a detailed analysis of several 
KOA-based multipliers implemented in FPGAs and ASICs. 
This work considers multipliers that are a mix of the KOA 
and the Classic algorithms. First, it analyzes separately both 
approaches and realizes that the classic method is better for 
small fields. Then, it implements a KOA multiplier that 
truncates recursive calls and executes small multipliers with 
the classic method. The KOA multiplier used on that work 
uses a splitting strategy very similar to the one used in this 
research. In [7], experiments with several multipliers were 
carried out. In order to provide a fair comparison for the 
research herein presented, those approaches that do not 
consider the modular reduction but which are closely related 
to this study were chosen. That work also presents place-
and-route results, however a direct comparison is not 
possible because the classic method implementation is 
carried out manually. Their results show the number of 
LUTs required in their design. 

In [8], several combinations of parallel and sequential 
multipliers are provided. Results for a sequential 240-bit 
multiplier are presented, for comparison with the proposed 
KOA-LFSR approach a 239-bit multiplier is selected. 

In [10], the number of slices used by the architecture is 

reported, for comparison the same parameter has been used. 
This paper explores different architectures of Karatsuba 
multipliers, some of them are fully parallel while others are 
a hybrid of parallel and sequential multipliers. The fastest 
(fully parallel) and the smallest architectures are shown. The 
reduction step is not considered in this research. Because, 

 is only considered as a power of 2, fields closer to 128 
and 256 are chosen for comparison. Exact 128 and 256 
fields are not selected because to the best of our knowledge, 
there are not irreducible polynomials reported for these 
fields. 

m

VI. CONCLUSIONS 
In this paper, a novel multiplier called KOA-LFSR has 

been presented. The proposed approach is a modification of 
the original Karatsuba-Ofman algorithm (KOA) to perform 
modular multiplication in . Contrary to the original 
Karastuba-Ofman multiplier that performs only the 
multiplication step, the KOA-LFSR performs both 
multiplication and modular reduction. An array of Linear 
Feedback Shift Registers connected in cascade to carry out 
the reduction is used, this array is computed during KOA 
recursive calls. The proposed multiplier performs better than 
the original KOA with Classical Reduction, saving area 
resources and achieving better timing. It is important to 
notice that the way of splitting the input operands is crucial 
for achieving an optimal performance. The splitting of input 
operands as shown in Equation 

(2 )mGF

(15) resulted in the best way 
to integrate the reduction step in the KOA algorithm. 
Because the LFSR is a regular and compact module, the 
synthesis tool optimally mapped this module leading to a 
better usage of hardware resources. For future work a hybrid 
multiplier will be tackled, where recursive calls can be 
truncated at a specific value and simpler multipliers would 
be used such as the Scholarbook one or multipliers 
embedded in the same FPGA device. 

 

a.    b.  

c.    d.  
Figure 6. Area and delay for Fully Parallel KOA-LFSR Multiplier for .                    BKM with Classical Reduction.               Proposed Multiplier  (2 )mGF
a. Trinomials area (LUTs). b. Trinomials minimum clock period (ns). c. Pentanomials area (LUTs). d. Pentanomials minimum clock period (ns). 
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TABLE III. COMPARATIVE BETWEEN THIS ARCHITECTURE AND OTHER JOBS. 
 

Ref. Device m  Fully 
Parallel 

Includes 
reduction Area Time 

(ns) 
[5]  Virtex E 191 YES YES 6265 Slices 45.889 

This Virtex E 191 YES YES 7093 Slices 19.308 
[7]  Virtex 5 163 YES NO 7488 LUTs -- 

This Virtex 5 163 YES YES 7786 LUTs 5.468 
[8]  Virtex II 128 NO NO 2473 Slices 378 
[8]  Virtex II 128 NO NO 3978 Slices 153 

This Virtex II 131 YES YES 4147 Slices 10.122 
[8]  Virtex II 240 NO NO 4839 Slices 290 

This Virtex II 239 YES YES 10510 Slices 10.710 
[9]  Virtex 5 128 YES YES 6941 LUTs 5.487 

This Virtex 5 131 YES YES 6162 LUTs 5.753 
[10]  Spartan 3 128 YES NO 10172 Slices 59.52 
[10]  Spartan 3 128 NO NO 2528 Slices 515.64 
This Spartan 3 131 YES YES 4205 Slices 13.454 
[10]  Spartan 3 256 YES NO -- 69.77 
[10]  Spartan 3 256 NO NO 8276 Slices 569.04 
This Spartan 3 239 YES YES 13620 Slices 15.046 
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